スキップしてメイン コンテンツに移動

高効率スーパーキャパシタ用グラフェンハイブリッド材料


ミュンヘン工科大学(TUM)のローランド・フィッシャー教授(無機・金属有機化学)との共同研究チームは、高効率のスーパーキャパシタを開発しました。このエネルギー貯蔵デバイスの基礎となるのは、現在利用されている電池と同等の性能データを持つ、新しく強力で持続可能なグラフェンハイブリッド材料です。

このハイブリッド材は、エネルギー貯蔵デバイスの正極として機能します。研究者たちは、チタンと炭素をベースにした実証済みの負極と組み合わせています。

この新しいエネルギー貯蔵デバイスは、最大73Wh/kgのエネルギー密度を達成しており、これはニッケル水素電池のエネルギー密度とほぼ同等であるだけでなく、16kW/kgの電力密度で他のほとんどのスーパーキャパシタよりもはるかに優れた性能を発揮します。

グラフェンハイブリッドの性能の決め手は、大きな比表面積と制御可能な細孔サイズ、そして高い導電性です。「この材料の高性能は、微多孔性MOFと導電性グラフェン酸の組み合わせに基づいています」と、筆頭著者のJayaramulu Kolleboyina氏は説明します。

「優れたスーパーキャパシタには、大きな表面が重要です。それは、材料内にそれぞれ多数の電荷キャリアを集めることを可能にします」。

研究者らは、巧みな材料設計により、グラフェン酸とMOFを連結するという偉業を成し遂げています。得られたハイブリッドMOFは、1グラムあたり900平方メートルという非常に大きな内面を持ち、スーパーキャパシタの正極として高い性能を発揮します。

しかし、新材料の利点はそれだけではありません。化学的に安定したハイブリッドを実現するには、成分間の強い化学結合が必要です。この結合は、明らかにタンパク質のアミノ酸間の結合と同じであるとフィッシャー教授は言う。「実際、我々はグラフェン酸とMOF-アミノ酸を接続し、一種のペプチド結合を作り出しているのです」。

ナノ構造成分間の安定した結合は、長期的な安定性という点で大きなメリットがあります。結合が安定していればいるほど、性能を大きく損なうことなく、より多くの充放電サイクルが可能になります。

比較のために。従来のリチウムアキュムレータの耐用年数は約5,000サイクルです。TUMの研究者が開発した新しいセルは、10,000サイクル後も90%近くの容量を維持しています。

Powerful graphene hybrid material for highly efficient supercapacitorsSupercapacitors challenge batteries

コメント

このブログの人気の投稿

グラフェンの注目のアプリケーション2015年⇒2020年

  グラフェンの応用製品にも時代によって、変わってきています。 Graphene-infoの記事を参考にしたトップ10ランキング    2015年      ⇒ 2020年 エレクトロニクス  ⇒ 医療 センサー      ⇒ センサー 電池        ⇒ 電池 医療        ⇒ 複合材料 複合材料      ⇒ 自動車用途 スーパーキャパシタ ⇒ コーティング コーティング    ⇒ スーパーキャパシタ 3Dプリンター   ⇒ 熱伝導 太陽電池      ⇒ インク ディスプレイ    ⇒ エレクトロニクス

グラフェンのコンクリートへ添加剤としての性能評価

科学論文によるグラフェン添加剤の性能検証 ( Posted By  Graphene Council , Monday, August 10, 2020 ) セメントモルタルやコンクリートの圧縮強度を向上させるために、アスペクト比の高いグラフェンプレートレットの重要性が確認されたことが、主要大学による新たな論文で明らかになりました。 アデレード大学が主導したこの研究では、First Graphene Ltd.が供給する高性能のPureGRAPH®添加剤を調査に使用しました。モルタルでは0.02%w/w、コンクリートでは0.01%w/wに相当する非常に低い添加量で、圧縮強度34.3%、曲げ強度38.6%の向上を記録しました。 研究者らは、プリスティングラフェン(PRG)粒子のアスペクト比が高くなるにつれて性能が向上することを観察し、ファーストグラフェン独自の電気化学プロセスで製造されたPureGRAPH®製品がセメントの性能を向上させるための理想的な候補であることを示しました。 研究者は、"本研究の結果から、プリスティングラフェンは、セメント複合材料の現在の欠点を改善するための建築材料への実用化において有望な添加剤であるだけでなく、セメント複合材料に使用されるセメント量の削減をサポートするための実現可能なオプションであり、大気中へのCO2フットプリントとCO2排出量を削減できる可能性があることを示している "と結論付けています。 Influence of pristine graphene particle sizes on physicochemical, microstructural and mechanical properties of Portland cement mortars  

グラフェンのコーティングでリチウム電池の火災を防ぐ

  イリノイ大学シカゴ工学部の研究者らは、グラフェンが、リチウム電池の火災から酸素を奪う可能性があると報告しています。 リチウム電池が発火する理由には、急速なサイクルや充放電、電池内の高温などがあります。これらの条件は、電池内部の正極(ほとんどのリチウム電池の場合はリチウム含有酸化物、通常はリチウムコバルト酸化物)が分解して酸素を放出する原因となります。この酸素が、十分な高熱下で電解質を分解して放出された他の可燃性生成物と結合すると、自然発火が起こる可能性があります。 「酸素が正極から出て、電池内の他の可燃性生成物と混ざるのを防ぐ方法があれば、火災が発生する可能性を減らすことができると考えました」と、UIC工学部の機械・産業工学の准教授であり、論文の原著者であるReza Shahbazian-Yassar氏は述べています。 研究者たちはまず、グラフェンを化学的に変化させて導電性を持たせた。次に、コバルト酸リチウム正極電極の微粒子を導電性グラフェンで包みました。 彼らは、グラフェンで包んだ酸化リチウムコバルト粒子を電子顕微鏡で観察したところ、高熱下での酸素の放出が、包んでいない粒子に比べて大幅に減少していることを確認した。 次に、包んだ粒子を結合材で結合させて使用可能な正極を形成し、リチウム金属電池に組み込んだ。電池のサイクル中に放出される酸素を測定したところ、非常に高い電圧でも正極から酸素がほとんど放出されないことがわかりました。 リチウム金属電池は、200サイクル後も良好な性能を維持していた。 「同じ条件下で性能が約45%低下した従来のリチウム金属電池と比較して、ラップド正極電池は、急速サイクル後に容量が約14%しか低下しなかった」とSharifi-Asl氏は述べている。 「私たちの研究では、正極に使用することで酸素の放出を確実に抑えることができ、携帯電話から車まであらゆるものに電力を供給しているこれらのバッテリーの火災リスクを大幅に低減できる可能性があることを示しています」 Graphene coating could help prevent lithium battery fires